Abstract

Bacterial biofilm is a strong fortress for bacteria to resist harsh external environments, which can enhance their tolerance and exacerbate the drug/pesticide resistance risk. Currently, photopharmacology provides an advanced approach via precise spatiotemporal control for regulating biological activities by light-controlling the molecular configurations, thereby having enormous potential in the development of drug/pesticides. To further expand the photopharmacology application for discovering new antibiofilm agents, we prepared a series of light-controlled azo-active molecules and explored their photo isomerization, fatigue resistance, and anti-biofilm performance. Furthermore, their mechanisms of inhibiting biofilm formation were systematically investigated. Overall, designed azo-derivative A11 featured excellent anti-Xoo activity with an half-maximal effective concentration (EC50) value of 5.45 μg mL-1, and the EC50 value could be further elevated to 2.19 μg mL-1 after ultraviolet irradiation (converted as cis-configuration). The photo-switching behavior showed that A11 had outstanding anti-fatigue properties. An in-depth analysis of the action mechanism showed that A11 could effectively inhibit biofilm formation and the expression of relevant virulence factors. This performance could be dynamically regulated via loading with private light-switch property. In this work, designed light-controlled azo molecules provide a new model for resisting bacterial infection via dynamic regulation of bacterial biofilm formation. © 2024 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.