Abstract

Electromagnetic filtering is essential for the coherent control, operation and readout of superconducting quantum circuits at milliKelvin temperatures. The suppression of spurious modes around transition frequencies of a few GHz is well understood and mainly achieved by on-chip and package considerations. Noise photons of higher frequencies – beyond the pair-breaking energies – cause decoherence and require spectral engineering before reaching the packaged quantum chip. The external wires that pass into the refrigerator and go down to the quantum circuit provide a direct path for these photons. This article contains quantitative analysis and experimental data for the noise photon flux through coaxial, filtered wiring. The attenuation of the coaxial cable at room temperature and the noise photon flux estimates for typical wiring configurations are provided. Compact cryogenic microwave low-pass filters with CR-110 and Esorb-230 absorptive dielectric fillings are presented along with experimental data at room and cryogenic temperatures up to 70 GHz. Filter cut-off frequencies between 1 to 10 GHz are set by the filter length, and the roll-off is material dependent. The relative dielectric permittivity and magnetic permeability for the Esorb-230 material in the pair-breaking frequency range of 75 to 110 GHz are measured, and the filter properties in this frequency range are calculated. The estimated dramatic suppression of the noise photon flux due to the filter proves its usefulness for experiments with superconducting quantum systems.

Highlights

  • 1 Introduction Superconducting quantum circuits are a mature and salient experimental platform for the development of quantum technologies [1]. They are at the core of technological transition to a so-called Noisy Intermediate-Scale Quantum (NISQ) level [2], where they are used for the construction of multi-qubit processors for quantum computation [3] and for the creation of structures to work as quantum simulators of other physical systems that are hard to study in a laboratory [4, 5]

  • A superconducting circuit is placed in a cryogenic refrigerator, at a temperature of ∼ 10 mK, where it is shielded from stray magnetic fields and thermal radiation

  • The estimation is done for a dilution refrigerator wiring configuration typical for experiments with superconducting quantum circuits and UT086SS-SS, UT047SS-SS and UT034SS-SS cables

Read more

Summary

Introduction

Superconducting quantum circuits are a mature and salient experimental platform for the development of quantum technologies [1]. The number of photons reaching the filter input is described by the noise photon occupation number function computed earlier for the case with attenuators and length l of the coaxial wiring (Fig. 1(b), blue line).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.