Abstract

Inspired by metallic alloys in atomic solids, two distinct metallic nanoparticles are used, considered as “artificial metal atoms,” to engineer ordered binary nanoparticle alloys at the mesoscale, called binary supracrystals. Here, ferromagnetic 7.2 nm Co nanoparticles are used as large “A” site particles, while either ferromagnetic 4.6 nm Co or nonmagnetic 4.0 nm Ag nanoparticles are used as small “B” site particles to fabricate long‐range ordered binary supracrystals with a stoichiometry of AB2 and AB13. The interparticle distances between 7.2 nm Co nanoparticles within the Co/Ag binary supracrystals can be tuned by a control of crystal structure from AB2 (CoAg2) to AB13 (CoAg13). A decrease of magnetic coupling between Co nanoparticles is observed as the Co–Co interparticle distance increases. Furthermore, by alloying 7.2 and 4.6 nm Co nanoparticles to form AB2 (CoCo2) binary supracrystals, a collective magnetic behavior of these two particle types, due to the dipolar interaction, is evidenced by observing a single peak in the zero‐field‐cooled magnetization curve. Compared with the CoAg2 binary supracrystals, a spin orientation effect in sublattice that reduces the dipolar interactions in the supracrystals is uncovered in CoCo2 binary supracrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.