Abstract

AbstractThe in‐depth understanding of local atomic environment–property relationships of p‐block metal single‐atom catalysts toward the 2 e− oxygen reduction reaction (ORR) has rarely been reported. Here, guided by first‐principles calculations, we develop a heteroatom‐modified In‐based metal–organic framework‐assisted approach to accurately synthesize an optimal catalyst, in which single In atoms are anchored by combined N,S‐dual first coordination and B second coordination supported by the hollow carbon rods (In SAs/NSBC). The In SAs/NSBC catalyst exhibits a high H2O2 selectivity of above 95 % in a wide range of pH. Furthermore, the In SAs/NSBC‐modified natural air diffusion electrode exhibits an unprecedented production rate of 6.49 mol peroxide gcatalyst−1 h−1 in 0.1 M KOH electrolyte and 6.71 mol peroxide gcatalyst−1 h−1 in 0.1 M PBS electrolyte. This strategy enables the design of next‐generation high‐performance single‐atom materials, and provides practical guidance for H2O2 electrosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call