Abstract

AbstractMXenes exhibit excellent capacitance at high scan rates in sulfuric acid aqueous electrolytes, but the narrow potential window of aqueous electrolytes limits the energy density. Organic electrolytes and room‐temperature ionic liquids (RTILs) can provide higher potential windows, leading to higher energy density. The large cation size of RTIL hinders its intercalation in‐between the layers of MXene limiting the specific capacitance in comparison to aqueous electrolytes. In this work, different chain lengths alkylammonium (AA) cations are intercalated into Ti3C2Tx, producing variation of MXene interlayer spacings (d‐spacing). AA‐cation‐intercalated Ti3C2Tx (AA‐Ti3C2), exhibits higher specific capacitances, and cycling stabilities than pristine Ti3C2Tx in 1 m 1‐ethly‐3‐methylimidazolium bis‐(trifluoromethylsulfonyl)‐imide (EMIMTFSI) in acetonitrile and neat EMIMTFSI RTIL electrolytes. Pre‐intercalated MXene with an interlayer spacing of ≈2.2 nm, can deliver a large specific capacitance of 257 F g−1 (1428 mF cm−2 and 492 F cm−3) in neat EMIMTFSI electrolyte leading to high energy density. Quasi elastic neutron scattering and electrochemical impedance spectroscopy are used to study the dynamics of confined RTIL in pre‐intercalated MXene. Molecular dynamics simulations suggest significant differences in the structures of RTIL ions and AA cations inside the Ti3C2Tx interlayer, providing insights into the differences in the observed electrochemical behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.