Abstract

Sluggish CO2 reduction reaction (CO2RR) and evolution reaction (CO2ER) kinetics at cathodes seriously hamper the applications of Li-CO2 batteries, which have attracted vast attention as one kind of promising carbon-neutral technology. Two-dimensional transition metal dichalcogenides (TMDs) have shown great potential as the bidirectional catalysts for CO2 redox, but how to achieve a high exposure of dual active sites of TMDs with CO2RR/CO2ER activities remains a challenge. Herein, a bidirectional catalyst that vertically growing MoS2 on Co9S8 supported by carbon paper (V-MoS2/Co9S8@CP) has been designed with abundant edge as active sites for both CO2RR and CO2ER, improves the interfacial conductivity, and modulates the electron transportation pathway along the basal planes. As evidenced by the outstanding energy efficiency of 81.2% and ultra-small voltage gap of 0.68 V at 20 μA cm-2, Li-CO2 batteries with V-MoS2/Co9S8@CP show superior performance compared with horizontally growing MoS2 on Co9S8 (H-MoS2/Co9S8@CP), MoS2@CP, and Co9S8@CP. Density functional theory calculations help reveal the relationship between performance and structure and demonstrate the synergistic effect between MoS2 edge sites and Co9S8. This work provides an avenue to understand and realize rationally designed electronic contact of TMDs with specified crystal facets, but more importantly, provides a feasible guide for the design of high-performance cathodic catalyst materials in Li-CO2 batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call