Abstract

A joint experimental and theoretical framework for the decoupling of boron (B) doping and stoichiometric-induced modifications to the structural properties and electronic band structure of germanium (Ge)/AlAs(001) heterostructures is presented. The effect of B-induced stress on nearest-neighbor Ge bonds is quantified via X-ray diffractometry and Raman spectroscopic analysis and subsequently interpreted through the lens of density functional perturbation theory. Similarly, experimental determination of the energy band alignment at the p-type Ge:B/AlAs heterointerface is understood using a density functional theory approach to model the influence of heterointerface stoichiometry and interatomic bonding between group IV and III–V interfacial atoms on the valence and conduction band discontinuities. The modeled two monolayer interatomic diffusion at the Ge/AlAs heterointerface is confirmed via atom probe tomography analysis, demonstrating a ∼6 A interfacial width. These results present a unified picture of th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call