Abstract

Development of efficient catalysts for the direct hydrogenation of CO2 to methanol is essential for the valorization of this abundant feedstock. Here we show that a silica-supported Cu/Mo2CTx (MXene) catalyst achieves a higher intrinsic methanol formation rate per mass Cu than the reference Cu/SiO2 catalyst with a similar Cu loading. The Cu/Mo2CTx interface can be engineered due to the higher affinity of Cu for the partially reduced MXene surface (in preference to the SiO2 surface) and the mobility of Cu under H2 at 500 °C. With increasing reduction time, the Cu/Mo2CTx interface becomes more Lewis acidic due to the higher amount of Cu+ sites dispersed onto the reduced Mo2CTx and this correlates with an increased rate of CO2 hydrogenation to methanol. The critical role of the interface between Cu and Mo2CTx is further highlighted by density functional theory calculations that identify formate and methoxy species as stable reaction intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call