Abstract
Peptoids are a family of sequence-defined, non-natural biomimetic polymers which show excellent properties including good chemical and enzymatic stability and high structural tunability. The solid-phase submonomer synthesis method allows precise control over the identity and sequence of chemically diverse side chains, enabling the atomic engineering of their chemical structures for a variety of applications. This unprecedented level of structural control enables access to atomically defined three-dimensional chain conformations and assemblies, facilitating the design and optimization of a variety of nanoscale architectures that can function in biology and materials science. In order to approach the rational design of peptoid materials in a more predictive and precise manner, it is crucial to fully understand how chemical information, in the form of the monomer sequence, encodes their folding and assembly into structurally defined, functional 3D shapes. This perspective focuses on recent studies into the atomic engineering of peptoid nanostructures by examining the impact of sequence variations on their secondary and three-dimensional structures, as well as their functional properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.