Abstract

The pursuit of a high-capacity anode material has been urgently required for commercializing sodium-ion batteries with a high energy density and an improved working safety. In the absence of thermodynamically stable sodium intercalated compounds with graphite, constructing nanostructures with expanded interlayer distances is still the mainstream option for developing high-performance carbonaceous anodes. In this regard, a surface-functionalized and pore-forming strategy through a facile CO2 thermal etching route was rationally adopted to engineer negligible oxygenated functionalities on commercial carbon for boosting the sodium storage process. Benefitted from the abundant ionic/electronic pathways and more active reaction sites in the microporous structure with noticeable pseudocapacitive behaviors, the functionalized porous carbon could achieve a highly reversible capacity of 505 mA h g-1 at 50 mA g-1, an excellent rate performance of 181 mA h g-1 at 16,000 mA g-1, and an exceptional rate cycle stability of 176 mA h g-1 at 3200 mA g-1 over 1000 cycles. These outstanding electrochemical properties should be ascribed to a synergistic mechanism, fully utilizing the graphitic and amorphous structures for synchronous intercalations of sodium ions and solvated sodium ion compounds, respectively. Additionally, the controllable generation and evolution of a robust but thin solid electrolyte interphase film with the emergence of obvious capacitive reactions on the defective surface, favoring the rapid migration of sodium ions and solvated species, also contribute to a remarkable electrochemical performance of this porous carbon black.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.