Abstract

We propose robust engineering superlyophobic surfaces (SLS) as a universal microfluidic platform for droplet manipulation enabling electric actuation, featured with characteristics of highly nonwetting, low adhesion, and low friction for various liquids including water and oil. To functionalize SLS with embedded electrodes, two configurations with continuous and discrete topologies have been designed and compared. The discrete configuration is found to be superior upon comparison of their fabrication, microstructures and nonwetting performances. We also present new formulation of SLS pressure stability for linear, square and hexagonal pattern layouts, and propose a criterion for three wetting states (the Cassie-Baxter, partial Cassie-Baxter and Wenzel states) by introducing two dimensionless parameters, which are supported by our experimental data. Droplet manipulation experiments including deformation and transport on electrode-embedded SLS were performed, showing that present SLS reduce adhesion and flow resistance of oil droplets respectively by 98% and 73% compared with a smooth hydrophobic surface, and the excellent hydrodynamic performances are applicable for a wide range of droplet velocity. Simulation of an oil droplet electrically actuated on SLS predicts the significantly increased droplet motion for a low solid fraction and a relatively large droplet size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.