Abstract

Restricted by the sluggish kinetics of the oxygen evolution reaction (OER), efficient OER catalysis remains a challenge. Here, a facile strategy was proposed to prepare a hollow dodecahedron constructed by vacancy-rich spinel Co3S4 nanoparticles in a self-generated H2S atmosphere of thiourea. The morphology, composition, and electronic structure, especially the sulfur vacancy, of the cobalt sulfides can be regulated by the dose of thiourea. Benefitting from the H2S atmosphere, the anion exchange process and vacancy introduction can be accomplished simultaneously. The resulting catalyst exhibits excellent catalytic activity for the OER with a low overpotential of 270 mV to reach a current density of 10 mA cm–2 and a small Tafel slope of 59 mV dec–1. Combined with various characterizations and electrochemical tests, the as-proposed defect engineering method could delocalize cobalt neighboring electrons and expose more Co2+ sites in spinel Co3S4, which lowers the charge transfer resistance and facilitates the formation of Co3+ active sites during the preactivation process. This work paves a new way for the rational design of vacancy-enriched transition metal-based catalysts toward an efficient OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.