Abstract

Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.

Highlights

  • Human metapneumovirus was first isolated in 2001 from respiratory specimens collected from children with respiratory tract infections [1]

  • Protection against Human metapneumovirus (hMPV) infection is afforded mainly by neutralizing antibodies directed against the fusion (F) glycoprotein

  • After iterative rounds of protein engineering, we generated a soluble form of the hMPV F protein in the postfusion conformation and determined its crystal structure

Read more

Summary

Introduction

Human metapneumovirus (hMPV) was first isolated in 2001 from respiratory specimens collected from children with respiratory tract infections [1]. Sequence analysis was used to classify hMPV in the Metapneumovirus genus of the Pneumovirinae subfamily of paramyxoviruses. This subfamily includes the Pneumovirus genus in which human respiratory syncytial virus (hRSV) is the best known prototype. The frequency of severe lower respiratory tract infections is highest for hRSV, hMPV contributes to a significant fraction of the worldwide burden of bronchiolitis and pneumonia in young children [4]. As for hRSV, hMPV infections are a frequent cause of morbidity and mortality in the elderly [5,6] and immunocompromised adults [7,8]. Vaccines are not yet available for hMPV and hRSV

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.