Abstract

The Co-N4-C single-atom catalysts (SACs) have attracted great research interest in the energy storage and conversion fields owing to 100% atom utilization. However, enhancing the Co loading for higher electrocatalytic performance is still challenging. In this context, we propose an engineering strategy to fabricate the high Co atomic loading Co-N4-C SACs based on the zeolitic imidazolate framework-67 (ZIF-67)@yeast construction. The rich amino groups provide the possibility for Co2+ ion anchorage and ZIF-67@yeast construction via the biomineralization of yeast cells. The functional design induces the formation of Co-N4-C sites and regulates the porosity for exposure of such Co-N4-C sites. As a result, the Co-N4-C sites were anchored on spherical micrometer flower carbonaceous materials through our novel strategy. The as-obtained optimal sample exhibited a Co atomic loading of 12.18 wt % and a specific surface area of 403.26 m2 g-1. High Co atomic loading and large specific surface area delivered excellent electrocatalytic kinetics as well as a high discharge voltage of 1.08 V at 10 mA cm-2 for more than 100 h in Zn-air batteries. This work represents a promising strategy for fabricating high-loading SACs with high activity and good durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.