Abstract

Applications of electrochemical detection methods in microfluidic paper-based analytical devices (μPADs) has revolutionized the area of point-of-care (POC) testing towards highly sensitive and selective quantification of various (bio)chemical analytes in a miniaturized, low-coat, rapid, and user-friendly manner. Shortly after the initiation, these relatively new modulations of μPADs, named as electrochemical paper-based analytical devices (ePADs), gained widespread popularity within the POC research community thanks to the inherent advantages of both electrochemical sensing and usage of paper as a suitable substrate for POC testing platforms. Even though general aspects of ePADs such as applications and fabrication techniques, have already been reviewed multiple times in the literature, herein, we intend to provide a critical engineering insight into the area of ePADs by focusing particularly on the practical strategies utilized to enhance their analytical performance (i.e. sensitivity), while maintaining the desired simplicity and efficiency intact. Basically, the discussed strategies are driven by considering the parameters potentially affecting the generated electrochemical signal in the ePADs. Some of these parameters include the type of filter paper, electrode fabrication methods, electrode materials, fluid flow patterns, etc. Besides, the limitations and challenges associated with the development of ePADs are discussed, and further insights and directions for future research in this field are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call