Abstract

Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.