Abstract
Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 µmol· h-1 with a high selectivity of 97.9% under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)32+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.