Abstract

We seek to couple protein-ligand interactions with synthetic gene networks in order to equip cells with the ability to process internal and environmental information in novel ways. In this paper, we propose and analyze a new genetic signal processing circuit that can be configured to detect various chemical concentration ranges of ligand molecules. These molecules freely diffuse from the environment into the cell. The circuit detects acyl-homoserine lactone ligand molecules, determines if the molecular concentration falls within two prespecified thresholds, and reports the outcome with a fluorescent protein. In the analysis of the circuit and the description of preliminary experimental results, we demonstrate how to adjust the concentration band thresholds by altering the kinetic properties of specific genetic elements, such as ribosome binding site efficiencies or dna-binding protein affinities to their operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.