Abstract

Plants are a rich source of valuable secondary metabolites. Plant cell culture technologies developed in the past as possible tools for secondary metabolites production. In most cases, for the large scale production of these compounds, production is too low for commercialization. The cultured cell suspensions being undifferentiated have not gained momentum because of their instability and non-uniformity of the product formation. Secondary metabolite production is under strict metabolic regulation and tissue specific localization. Hence the differentiated cultures such as hairy root cultures are widely studied. Agrobacterium rhizogenes causes hairy root disease in plants. Transformed roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce amounts of secondary metabolites comparable to that of intact plants. Elicitation of hairy roots leads to increased production of secondary metabolites and also helps in designing of metabolic traps to allow adsorption of product, preventing feedback inhibition and protection of metabolites from degradation in the culture media. Permeabilization and in situ product adsorption result in many fold increase in product yield. T- DNA activation tagging allows overexpressing the respective gene and increasing the product formation in transformed hairy roots. Recent progress in transgenic research has opened up the possibility of the metabolic engineering of biosynthetic pathways to produce high-value secondary metabolites. Metabolic engineering offers promising perspectives to improve yields; however it requires the understanding of the regulation of the secondary metabolite pathways involved in the regulation of levels of product, enzymes and genes, including aspects as transport and compartmentation. This article reviews the recent advances in secondary metabolites production in transformed hairy roots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call