Abstract

Moderate steric repulsion within the supramolecular ribbon chains assembled by 1,2,5-telluradiazole derivatives causes a distortion of the [Te−N]2 supramolecular synthon which removes the inversion center from the four-membered virtual ring. This geometrical feature can propagate through the lattice, creating a noncentrosymmetric crystal with second-order nonlinear optical (NLO) properties. This principle was demonstrated in the cases of 3,4-dicyano-1,2,5-telluradiazole and 5,6-dichlorobenzo-2,1,3-telluradiazole. The second harmonic generation efficiency of these materials, however, is modest because the molecular dipole moments have a nearly antiparallel arrangement in the ribbons. The structure of 5-benzoylbenzo-2,1,3-telluradiazole demonstrates that it is indeed possible to extend this strategy to generate acentric crystals of benzo-2,1,3-telluradiazoles featuring pendant groups (including NLO chromophores) and in this way design more efficient NLO materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.