Abstract

The efficiencies of open-air processed Cu2O/Zn1–xMgxO heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn1–xMgxO and the indium tin oxide (ITO) top contact. By depositing Zn1–xMgxO with a long band-tail, charge flows through the Zn1–xMgxO/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn1–xMgxO thickness to ensure that the Schottky barrier is spatially removed from the p–n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn1–xMgxO films with increasing thickness. This work therefore shows that the Zn1–xMgxO window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.