Abstract
Recovery of uranium and transuranic (TRU) actinides from spent nuclear fuel by an electrorefining process was investigated as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative. Experiments were performed in a shielded hot cell at the Materials and Fuels Complex at Idaho National Laboratory. The goal of these experiments was to collect, by an electrochemical process, kilogram quantities of uranium and plutonium into what is called a liquid cadmium cathode (LCC).For each experiment, a steel basket loaded with chopped spent nuclear fuel from the Experimental Breeder Reactor II acted as the anode in the electrorefiner. The cathode was a beryllium oxide crucible containing ~26 kg of cadmium metal (the LCC). In the three experiments performed to date, between 1 and 2 kg of heavy metal was collected in the LCC after passing an integrated current between 1.80 and 2.16 MC (500 and 600 A h) from the anode to the cathode. Sample analysis of the processed LCC ingots measured detectable amounts of TRUs and rare earth elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.