Abstract

Optimization of supply and conversion efficiency of geranylgeranyl diphosphate (GGPP) is important for enhancing geranylgeraniol (GGOH) production in Saccharomyces cerevisiae. In this study, first, a strain producing 26.92 ± 1.59 mg/g of dry cell weight squalene was constructed with overexpression of all genes of the mevalonate (MVA) pathway, and an engineered strain producing 597.12 mg/L GGOH at the shake flask level was obtained. Second, through additional expression of PaGGPPs-ERG20 and PaGGPPs-DPP1, and downregulating expression of ERG9, the GGOH titer was increased to 1221.96 mg/L. Then, a NADH HMG-CoA reductase from Silicibacter pomeroyi (SpHMGR) was introduced to alleviate the high dependence of the strain upon NADPH, and the GGOH production was further increased to 1271.14 mg/L. Finally, the GGOH titer reached 6.33 g/L after optimizing the fed-batch fermentation method in a 5 L bioreactor, with a 24.9% improvement from the previous report. This study might accelerate the process of developing S. cerevisiae cell factories for diterpenoid and tetraterpenoid production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call