Abstract
Polymerization of monomers included by macrocyclic hosts has been found as an efficient way to synthesize sophisticated rotaxane-based nanostructures, whereas such a process triggered by photon has received little coverage so far. Herein, a new diphenyldiacetylene (DPDA) derivative (compound 1) comprising viologen as a binding site toward cucurbit[7]uril (CB[7]) macroring, and isophthalate as a bulky stopper, was rationally designed and prepared. After verifying the photo-cross-linking efficiency of compound 1 upon its regular self-assembly, we also achieved a straightforward construction of rotaxane-based nanoarchitecture 2 ⊂ CB[7] through an in situ photoirradiation on the corresponding pseudo[2]rotaxane 1 ⊂ CB[7]. Although the threading of CB[7] changed the self-assembly behavior of the DPDA derivative, the topochemical reaction could be definitely observed to afford the corresponding photo-cross-linked species. Such a process could be facilely indicated by distinctive photoluminescence enhancement on the basis of π-conjugated skeleton change of DPDA toward potential usage of rotaxane-based systems as smart optoelectronic materials. We anticipate this unique strategy will allow new visions for the synthesis and application of novel luminescent host–guest nanoarchitectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.