Abstract

AbstractMetal single‐atom (SA) catalysts have attracted immense attention due to the high catalytic efficiency given by the desired coordination environment of each metal atom. Yet, engineering the local electronic structure of SAs and multi‐atoms (MAs) still remains a challenge. Herein, an atomically dispersed catalyst comprised of Pt SAs, Pt‐Pt/V dual‐atoms, and small clusters supported on a vanadium and nitrogen co‐doped carbon (VNC) (denoted as Pt@VNC) surface is synthesized. In the Pt@VNC, both V and Pt atoms are evenly distributed on the surface of N‐doped carbon, while a few Pt atoms are linked to other Pt atoms via V, forming Pt clusters. The coordination structures of Pt atoms are modulated upon introducing atomically dispersed V sites (which generate small‐sized Pt clusters) and V2O5 clusters, showing extraordinary activity for the hydrogen evolution reaction (HER). Benefiting from the low charge transfer resistance, i.e., fast reaction kinetics, due to the synergistic effect of SAs and clusters, the Pt@VNC demonstrates superior catalytic efficiency and robust durability for the HER. It requires an overpotential of only 5 mV at a current density of 10 mA cm−2 and shows 15 times larger mass activity than the commercial 20 wt.% Pt/C catalyst. This novel catalyst‐design strategy paves a new way for maximizing catalytic efficiency by optimizing the coordination structure of metal atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call