Abstract

Protein A chromatography is a workhorse in monoclonal antibody (mAb) manufacture since it provides effective separation of mAbs from impurities such as host-cell proteins (HCPs) in a single capture step. HCP clearance can be aided by the inclusion of a wash step prior to low-pH elution. Although high-pH washes can be effective in removing additional HCPs from the loaded column, they may also contribute to a reduced mAb yield. In this work we show that this yield loss is reflected in a pH-dependent variation of the equilibrium binding capacity of the protein A resin, which is also observed for the capacity of the Fc fragments alone and therefore not a result of steric interactions involving the Fab fragments in the intact mAbs. We therefore hypothesized that the high-pH wash loss was due to protonation or deprotonation of ionizable residues on the protein A ligand. To evaluate this, we applied a rational protein engineering approach to the Z domain (the Fc-binding component of most commercial protein A ligands) and expressed engineered mutants in E. coli. Biolayer interferometry and affinity chromatography experiments showed that some of the Z domain mutants were able to mitigate wash loss at high pH while maintaining similar binding characteristics at neutral pH. These experiments enabled elucidation of the roles of specific interactions in the Z domain - Fc complex, but more importantly offer a route to ameliorating the disadvantages of high-pH washes in protein A chromatography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.