Abstract
ABSTRACT Soil improvement is a significant aspect of geotechnical engineering that requires periodic assessment and modification. This study aims to see how glass powder (GP) and rubber particles (RP) affect the shear strength and bearing capacity of clay soil collectively and separately. The soil samples were subjected to direct shear testing and California Bearing Ratio (CBR) tests at various glass powder and rubber particle contents. The CBR test was conducted under soaked and unsoaked conditions. Clay-rubber, clay-glass powder, and clay-rubber-glass powder mixtures were prepared for the tests. It was discovered that adding glass powder and rubber particles improved the soil’s shear strength parameters and bearing capacity. A comparative analysis was conducted on the clay-rubber mixtures and clay-glass powder mixtures. The results indicated much improvement by the rubber particles than the waste glass powder in the direct shear test. In contrast, the glass powder had a better impact than the rubber particles in the CBR test. Furthermore, a correlation analysis was conducted to ascertain the relationship between the CBR values and the shear strength of the soil samples using a single Linear Regression Analysis (SRLA) model. The correlation yielded satisfactory coefficients (R2), indicating a strong link between the engineering properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.