Abstract

AbstractThe low initial Coulombic efficiency (ICE) and insufficient cycling lives of silicon (Si)‐based anodes seriously hinder their eventual introduction into next‐generation high‐energy‐density lithium–ion batteries (LIBs). Herein, an engineering prelithiation binder strategy based on polyacrylic acid (LixPAA) is proposed for representative SiOx anodes. The ICEs and cycling lives of SiOx anodes are significantly improved by precisely controlling the lithiation degree of PAA binder. The ICE of the high‐loading (3.0 mg cm−2) SiOx electrode increases by 10.9% when the Li0.75PAA binder replaces the PAA binder. Moreover, the working mechanism of the lithiation binder strategy to improve the electrochemical performances (especially for ICE) is systematically investigated, which is universally applied to other Si anodes such as Si nanoparticles and Si/graphite. This universal binder strategy and proposed working mechanism provide enlightenment on constructing high‐ICE, high‐energy‐density, and long‐life Si‐based anodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.