Abstract

Technology change stimulates the expectations of society and seeks to satisfy its demands. Continuing advances in electronics and information technology over the last 20 years have responded to the challenge posed by the environmental impacts of agricultural production systems. Future agriculture will require precision techniques to assemble information and achieve increasingly precise and responsive management practices in order to reduce wasteful inputs, and meet the social and economic pressures for safe high quality food at lower cost. Biosystems engineering, an interdisciplinary science linking biology, physics, engineering and mathematics, can provide understanding and then innovative precision solutions for agriculture. Public and industry investment will be needed to achieve the necessary goals of lower environmental impact, and precision techniques will make a signi. cant contribution. Worldwide, the availability of tools that allow accurate control of inputs and traceable management of food production will contribute to sustainable food production for all. The vision is of systems that utilise sensing methods and mathematical models of the biological process, and link them through to control algorithms that realise practical benefits. Tools to measure spatial variation in crop yield will draw on statistical models to interpret complex variation and provide robust information to justify variable input management. Machine vision will interpret complex natural scenes, leading to real-time control, and biosensors will be incorporated into automated systems for sensing animal fertility status, leading to automatic monitoring of animal health and welfare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call