Abstract
Optical radiation absorption in a polylayer spherical microparticle simulating an inorganic/organic polyshell absorbing microcapsule is considered. With the aim of the finite-difference time-domain technique, the spatial distribution of the absorbed light power in microcapsules of various sizes and internal structure is numerically calculated. For the purpose of light absorption enhancement, we have engineered the optimal structure of a capsule consisting of a strong-refracting transparent outer coating and an absorbing layer which covers a liquid core. The proposed microcapsule prototype provides for a manifold increase in the absorbed light power density in comparison with the usual single-layer absorbing capsule. We show that for light-wavelengths-scaled microcapsules it is optimal to use a material with the refractive index larger than two as an outer shell, for example, titanium dioxide (TiO2). The highest values of the absorbed power density can be obtained in microcapsules with absorbing shell thickness of approximately a tenth of a laser wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.