Abstract

Engineering dynamic control of gene expression is desirable because many engineered functions interfere with endogenous cellular processes that have evolved to facilitate growth and survival. Minimizing conflict between growth and production phases can therefore improve product titers in microbial cell factories. We developed an autoinduced gene expression system by rewiring the Saccharomyces cerevisiae pheromone response pathway. To ameliorate growth reduction due to the early onset response at low population densities, α-pheromone of Kluyveromyces lactis (Kα) instead of S. cerevisiae (Sα) was expressed in mating type "a" yeast. Kα-induced expression of pathway genes was further enhanced by the transcriptional activator Gal4p expressed under the control of the pheromone-responsive FUS1 promoter (Pfus1). As a demonstration, the engineered circuit combined with the deletion of the endogenous galactose metabolic pathway genes was applied to the production of human milk oligosaccharides, 2'-fucosyllactose (2'-FL) and 3-fucosllactose (3-FL). The engineered strains produced 3.37 g/L 2'-FL and 2.36 g/L 3-FL on glucose with a volumetric productivity of 0.14 and 0.03 g/L·h-1 in batch flask cultivation, respectively. These represented 147 and 153% increases over the control strains on galactose wherein the respective pathway genes are expressed under GAL promoters only. Further fed-batch fermentation achieved titers of 32.05 and 20.91 g/L for 2' and 3-FL, respectively. The genetic program developed here thus represents a promising option for implementing dynamic regulation in yeast and could be used for the production of biochemicals that may place a heavy metabolic burden on cell growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.