Abstract
The advancement of lead-free glass ceramics (GCs) possessing appropriate energy storage characteristics is crucial for the renewable energy and electronics industry. In this study, we synthesized lead-free GCs predominantly composed of the tungsten bronze phase, Ba3.3Nb10O28.3. Ab initio molecular dynamics initially reveal nonuniform distribution within the Ba/Nb-O regions in niobite glassy melts, offering valuable insights for the subsequent crystallization process. The proposal of a B-site engineering strategy is suggested, which entails the concurrent reduction of grain size and augmentation of the band gap in tungsten bronze GCs doped with Ta. This approach results in a substantial enhancement of the dielectric breakdown strength (BDS). Phase-field simulations have indicated that the refinement of grain sizes plays a pivotal role in augmenting the local electric field distribution and breakdown path, thereby contributing to the enhancement of BDS. As a consequence of these modifications, a notably high recoverable energy density (Wrec) of 5.23 J/cm3 can be achieved, accompanied by an ultrahigh efficiency (η) of 94%, and superior thermal stability in energy storage. These outcomes are particularly evident in the case of 2 mol % Ta2O5-doped P2O5-K2O-BaO-Bi2O3-TeO2-Nb2O5 (PKBBTN-T) GCs, where the Wrec and η can be determined to be 2.87 ± 3% J/cm3 and 95.46 ± 4%, respectively, over a temperature range spanning from 20 to 150 °C. Additionally, this specimen exhibits an exceptionally high discharge energy density (Wdis) of 4.01 J/cm3. This comprehensive investigation, comprising experimental and theoretical analyses, establishes an effective pathway and paradigm for the development of dielectric materials with ultrahigh energy storage properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.