Abstract
The design and synthesis of metallic nanocatalysts with distinct nanostructures and composition is still a noteworthy topic in the electrochemistry field. In this work, we have realized the morphological evolution of PdIr nanostructures in aqueous solution through the synergistic effect of self-assembled functional surfactants and different halide ions, and achieved precise control of the kinetic and thermodynamic crystalline growth due to the different reduction potential between PdCl4 2- , PdBr4 2- , and PdI4 2- . The actual precursors of PdCl4 2- resulted in ultrathin nanodendrites, PdClx Br(4-x) 2- for nanosheets and fewer branched nanodendrites, PdClx I(4-x) 2- for nanorings, nanoflowers and multiply concave nanocubes. Owing to the synergistic advantages of structure and composition (alloyed Ir), PdIr nanodendrites exhibited enhanced electrocatalytic activity, anti-poisoning ability, and stability toward alcohols (including ethanol, methanol, and glycerol) electrooxidation reactions. The results would be helpful for thoroughly understanding how structure-directing surfactants and halide ions synergistically determine the production of advanced metallic nanocrystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.