Abstract

Metal atom adsorption is recently considered to be an efficient approach to achieve stability of black phosphorus required by practical devices with no damage to its pristine excellent properties. Using first-principles calculations, we studied the structures and electronic properties of monolayer black phosphorus with Fe atom adsorption under different biaxial strain. Monolayer BP becomes an indirect bandgap semiconductor due to the contribution of adsorbed Fe atom. Strain is considered as a promising way to turn the electronic structures of the adsorption systems. The compressive strain reduces the band gap value of the systems, and eventually results in a semiconductor-metal transition when the strain reaches −8%. The tensile strain would turn the value of band gap ranging from 0.96 eV to 0.60 eV, and an indirect-direct band gap transition would occur with the tensile strain of 4%. In addition, it is found that the charge density difference and charge transfer nearly unchanged under different strain, means that the Fe–P covalent bonds are very strong. The combination of adjustable electronic properties with stability makes black phosphorus an attractive material for fundamental physics studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.