Abstract

Maltol derivatives are utilized in a variety of fields due to their metal-chelating abilities, and modification of the 2-methyl side chain is known to effectively expand their functional diversity. In the present study, microbial enzymes were screened for hydroxylating activity towards the 2-methyl group in a maltol derivative, 3-benzyloxy-2-methyl-4-pyrone (BMAL). Novosphingobium sp. SB32149 was found to have the ability to convert BMAL into 3-benzyloxy-2-hydroxymethyl-4-pyrone (BMAL-OH). The enzymes responsible, a cytochrome P450 monooxygenase (P450nov), a ferredoxin (FDXnov), and a ferredoxin reductase (FDRnov), were identified in the SB32149 strain. In the reaction with recombinant Escherichia coli expressing P450nov, FDXnov, and FDRnov, BMAL-OH was successfully produced from BMAL. Moreover, using the directed evolution approach, four amino acid substitutions, L188P/F218L/L237M in P450nov and A10T in FDXnov, were found to enhance BMAL-OH production. Consequently, up to 5.2g/L BMAL-OH was obtained from 8.0g/L BMAL by bioconversion using a 250-mL jar fermenter, indicating that this strain may be useful for synthesis of maltol derivatives which could have potential applications in various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.