Abstract

The aqueous-phase reforming of methanol(APRM)via non-precious metal heterogeneous catalysts is highly desirable, but challenging. Herein, we report a highly efficient copper catalyst encapsulated by chitosan-glucose (CS-G) conjugate with high metal loading of 35 wt% for H2 generation from APRM. The optimized Cu@CS19-G1-300 catalyst exhibited exceptional activity of 1.39 × 105 μmolH2/gcat/h at low temperature of 210 °C, which was ∼4.5 times higher than that of commercial CuZrAl catalysts (2.88 × 104 μmolH2gcat−1h−1). The chitosan-glucose conjugate acted not only as the main carbon support for Cu dispersion, but also as adsorbent to stablize as many Cu ions as possible. And meanwhile, with abundant Cu+/Cu0 interface sites due to the reducing effect of glucose, the water gas shift reaction (WGSR) was intensified and thus displayed excellent selectivity toward CO by-product. This specific catalyst construction for H2 production from APRM exhibits great potential of on-site H2 supply for polymer membrane fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.