Abstract

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive and irreversible loss of lung function. Clinically safe and efficacious drug treatments for IPF are lacking. Pirfenidone (an anti-inflammatory, antioxidant and anti-fibrotic small-molecule drug) is considered a promising treatment for IPF. Unfortunately, several disadvantages of pirfenidone caused by traditional administration (e.g., gastrointestinal reactions, short elimination half-life) hinder its implementation. We designed pirfenidone pH-sensitive liposomes (PSLs) to target the acidic microenvironment of IPF and act directly at the disease site through pulmonary administration. Pirfenidone was encapsulated in liposomes to extend its half-life, and modified with polyethylene glycol on the surface of liposomes to improve the permeability of the mucus layer in airways. In vitro, the cytotoxicity of pirfenidone PSLs to pulmonary fibroblasts was increased significantly at 48 h compared with that using pirfenidone. In a murine and rat model of bleomycin-induced pulmonary fibrosis, pirfenidone PSLs inhibited IPF development and increased PSL accumulation in the lungs compared with that using pirfenidone solution or phosphate-buffered saline. Pirfenidone PSLs had potentially fewer side effects and stronger lung targeting. These results suggest that pirfenidone PSLs are promising preparations for IPF treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.