Abstract

L-tryptophan (L-trp), produced through bio-manufacturing, is widely used in the pharmaceutical and food industries. Based on the previously developed L-trp-producing strain, this study significantly improved the titer and yield of L-trp, through metabolic engineering of the shikimate pathway and the L-tryptophan branch. First, the rate-limiting steps in the shikimate pathway were investigated and deciphered, revealing that the combined overexpression of the genes aroE and aroD increased L-trp production. Then, L-trp synthesis was further enhanced at the shaking flask level by improving the intracellular availability of L-glutamine (L-gln) and L-serine (L-ser). In addition, the transport system and the competing pathway of L-trp were also modified, indicating that elimination of the gene TnaB contributed to the extracellular accumulation of L-trp. Through optimizing formulas, the robustness and production efficiency of engineered strains were enhanced at the level of the 30 L fermenter. After 42 h of fed-batch fermentation, the resultant strain produced 53.65 g/L of L-trp, with a yield of 0.238 g/g glucose. In this study, the high-efficiency L-trp-producing strains were created in order to establish a basis for further development of more strains for the production of other highly valuable aromatic compounds or their derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.