Abstract

Surface-enhanced Raman scattering (SERS) has attracted great interest due to its remarkable enhancement, excellent sensitivity, and the “fingerprinting” ability to produce distinct spectra for detecting various molecules. Noble metal nanomaterials have usually been employed as SERS-active substrates because of their strong SERS enhancement originated from their unique surface plasmon resonance (SPR) properties. Because the SPR property depends on metal material's size, shape, morphology, arrangement, and dielectric environment around metal nanostructures, the key to wider applications of SERS technique is to develop plasmon-resonant structures with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. This review presents a general view on the theory background of SERS effect and several basic concepts and focuses on recent progress in engineering metallic nanostructures with various morphologies using versatile methods for improving SERS properties. Their potential applications in the field of chemical detection and biological sensing are overviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call