Abstract
A number of natural and artificial bacterial riboswitches have been reported thus far. However, they generally function only in bacteria, not in eukaryotes. This is because of the differences of expression mechanisms (transcription, translation, and so on) between these two main types of organisms. For example, the mechanism of translation initiation is quite different between bacteria and eukaryotes, especially in ribosome loading on mRNA. While the bacterial ribosome binds to a well-conserved, internal sequence some bases before the start codon to initiate translation, the eukaryotic one is loaded on the 5' terminus with the help of certain eukaryotic initiation factors. This means not only that bacterial riboswitches regulating translation initiation are not available in eukaryotic translation systems, but also that it is physically difficult to construct eukaryotic ON riboswitches that regulate the eukaryotic canonical translation initiation, because an aptamer cannot be inserted upstream of the ribosome loading site. However, the mechanism of noncanonical translation initiation via "ribosomal shunt" enables us to design translation initiation-modulating (specifically, ribosomal shunt-modulating) eukaryotic ON riboswitches. This chapter describes a facile method for engineering these ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system. Because these riboswitches do not require hybridization switching thanks to a unique shunting mechanism, they have the major advantages of a low energy requirement for upregulation and relatively straightforward design over common hybridization switch-based ON riboswitches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.