Abstract

AbstractThe second near‐infrared (NIR‐II) fluorescent imaging shows great potential for deep tissue analysis at high resolution in living body owing to low background autofluorescence and photon scattering. However, reversible monitoring of redox homeostasis using NIR‐II fluorescent imaging remains a challenge due to the lack of appropriate probes. In this study, a series of stable and multifunctional NIR‐II dyes (NIR‐II Cy3s) were constructed based on trimethine skeleton. Significantly, introducing the 1,4‐diethyl‐decahydroquinoxaline group to theNIR‐II Cy3snot only effectively increased the wavelength, but also served as an effective response site for HClO, which can be restored by reactive sulfur species (RSS). Based on this,NIR‐II Cy3swere used for reversible monitoring of HClO/RSS‐mediated redox processes in the pathophysiology environment. Finally,NIR‐II Cy3‐988was successfully utilized for assessment of the redox environments and drug treatment effects in acute inflammation model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call