Abstract
CYP68JX, a P450 hydroxylase, derived from Colletotrichum lini ST-1 is capable of biotransforming dehydroepiandrosterone (DHEA) to 3β,7α,15α-trihydroxy-5-androstene-17-one (7α,15α-diOH-DHEA). Redox partners and cofactor supply are important factors affecting the catalytic activity of CYP68JX. In this study, the heterologous expression of CYP68JX in Saccharomyces cerevisiae BY4741 was realized resulting in a 17.1% target product yield. In order to increase the catalytic efficiency of CYP68JX in S. cerevisiae BY4741, a complete cytochrome P450 redox system was constructed. Through the combination of CYP68JX and heterologous CPRs, the yield of the target product 7α,15α-diOH-DHEA in CYP68JX recombinant system was increased to 37.8%. Furthermore, by adding NADPH coenzyme precursor tryptophan of 40 mmol/L and co-substrate fructose of 20 g/L during the conversion process, the catalytic efficiency of CYP68JX was further improved, the target product yield reached 57.9% which was 3.39-fold higher than initial yield. Overall, this study provides a reference for improving the catalytic activity of P450s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.