Abstract

AbstractContact engineering is an important issue for organic electronics as it allows to reduce charge carrier injection barriers. While the use of molecular contact primer layers to control the energy level alignment is demonstrated in many concept studies, mainly using (single crystalline) model substrates, the processability of electrodes and their robustness must also be considered in real devices. Although silver electrodes can be printed using silver ink, their low work function and sensitivity to oxidation severely limits their use for printable organic electronics. The present study demonstrates that monolayers of F4TCNQ and F6TCNNQ provide a reliable approach to engineer high work function silver electrodes, which is examined for Ag(111) as well as polycrystalline and silver ink substrates. Notably, upon multilayer growth, a pronounced intercalation of silver into the molecular adlayer occurs, yielding thermally stabilized organometallic interphases extending over the entire adlayer. It is shown that heating allows their controlled desorption leaving behind a well‐defined monolayer that is further stabilized by additional charge transfer. Especially F6TCNNQ contact primer layers can also be prepared on oxidized silver electrodes yielding work functions of 5.5–5.6 eV, which can even withstand air exposure. Such contact primers show no interdiffusion into subsequently deposited layers of the prototypical p‐type organic semiconductor pentacene, hence validating their use for organic electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.