Abstract

Lignocellulosic biomass yields after hydrolysis, besides the hexose D-glucose, D-xylose, and L-arabinose as main pentose sugars. In second generation bioethanol production utilizing the yeast Saccharomyces cerevisiae, it is critical that all three sugars are co-consumed to obtain an economically feasible and robust process. Since S. cerevisiae is unable to metabolize pentose sugars, metabolic pathway engineering has been employed to introduce the respective pathways for D-xylose and L-arabinose metabolism. However, S. cerevisiae lacks specific pentose transporters, and these sugars enter the cell with low affinity via glucose transporters of the Hxt family. Therefore, in the presence of D-glucose, utilization of D-xylose and L-arabinose is poor as the Hxt transporters prefer D-glucose. To solve this problem, heterologous expression of pentose transporters has been attempted but often with limited success due to poor expression and stability, and/or low turnover. A more successful approach is the engineering of the endogenous Hxt transporter family and evolutionary selection for D-glucose insensitive growth on pentose sugars. This has led to the identification of a critical and conserved asparagine residue in Hxt transporters that, when mutated, reduces the D-glucose affinity while leaving the D-xylose affinity mostly unaltered. Likewise, mutant Gal2 transporter have been selected supporting specific uptake of L-arabinose. In fermentation experiments, the transporter mutants support efficient uptake and consumption of pentose sugars, and even co-consumption of D-xylose and D-glucose when used at industrial concentrations. Further improvements are obtained by interfering with the post-translational inactivation of Hxt transporters at high or low D-glucose concentrations. Transporter engineering solved major limitations in pentose transport in yeast, now allowing for co-consumption of sugars that is limited only by the rates of primary metabolism. This paves the way for a more economical second-generation biofuels production process.

Highlights

  • Lignocellulosic biomass, from hardwood, softwood, and agricultural residues, is generally regarded as a promising feedstock for the production of sustainable energy fuels

  • The yeast Saccharomyces cerevisiae is generally used for bioethanol production from lignocellulosic biomass

  • The specific growth rate was significantly higher at low D-xylose concentration (4 g/L), when CiGxf1 was expressed, whereas it remained unchanged at high D-xylose concentration (40 g/L). These results suggest recombinant xylose-utilizing S. cerevisiae only benefit from such specific transporters at low D-xylose concentrations (Runquist et al, 2009; Fonseca et al, 2011; Tanino et al, 2012; Diao et al, 2013)

Read more

Summary

University of Groningen

Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications Nijland, Jeroen G; Driessen, Arnold J M. In the presence of D-glucose, utilization of D-xylose and L-arabinose is poor as the Hxt transporters prefer D-glucose To solve this problem, heterologous expression of pentose transporters has been attempted but often with limited success due to poor expression and stability, and/or low turnover. A more successful approach is the engineering of the endogenous Hxt transporter family and evolutionary selection for D-glucose insensitive growth on pentose sugars. Transporter engineering solved major limitations in pentose transport in yeast, allowing for co-consumption of sugars that is limited only by the rates of primary metabolism This paves the way for a more economical second-generation biofuels production process

INTRODUCTION
Pentose Metabolism
Monosaccharide Transport
HETEROLOGOUS EXPRESSION OF PENTOSE TRANSPORTERS
Heterologous Xylose Transporters
Heterologous Arabinose Transporters
ENGINEERING OF ENDOGENOUS YEAST HEXOSE TRANSPORTERS
Findings
OUTLOOK AND PERSPECTIVE
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call