Abstract
Polarization engineering of GaN-based heterostructures opens a way to develop advanced transistor heterostructures, although measurement of the electric field in such heterostructures is not a simple task. In this work, contactless electroreflectance (CER) spectroscopy has been applied to measure the electric field in GaN-based heterostructures. For a set of GaN(d = 0, 5, 15, and 30 nm)/AlGaN(20 nm)/GaN(buffer) heterostructures a decrease of electric field in the GaN(cap) layer from 0.66 MV cm−1 to 0.27 MV cm−1 and an increase of the electric field in the AlGaN layer from 0.57 MV cm−1 to 0.99 MV cm−1 have been observed with the increase in the GaN(cap) thickness from 5–30 nm. For a set of GaN(20 nm)/AlGaN(d = 10, 20, 30, and 40 nm)/GaN(buffer) heterostructures a decrease of the electric field in the AlGaN layer from 1.77 MV cm−1 to 0.64 MV cm−1 and an increase of the electric field in the GaN layer from 0.57 MV cm−1 to 0.99 MV cm−1 were observed with the increase in the AlGaN thickness from 10–40 nm. To determine the distribution of the electric field in these heterostructures the Schrödinger and Poisson equations are solved in a self-consistent manner and matched with experimental data. It is shown that the built-in electric field in the GaN(cap) and AlGaN layers obtained from measurements does not reach values of electric field resulting only from polarization effects. The measured electric fields are smaller due to a screening of polarization effects by free carriers, which are inhomogeneously distributed across the heterostructure and accumulate at interfaces. The results clearly demonstrate that CER measurements supported by theoretical calculations are able to determine the electric field distribution in GaN-based heterostructures quantitatively, which is very important for polarization engineering in this material system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.