Abstract

Fabricating two-dimensional transition-metal dichalcogenide (TMD)-based unique composites is an effective way to boost the overall physical and chemical properties, which will be helpful for the efficient and fast capture of elemental mercury (Hg0) over a wide temperature range. Herein, we constructed a defect-rich Cu2WS4 nano-homojunction decorated on covalent organic frameworks (COFs) with abundant S vacancies. Highly well-dispersed and uniform Cu2WS4 nanoparticles were immobilized on COFs strongly via an ion pre-anchored strategy, consequently exhibiting enhanced Hg0 removal performance. The saturation adsorption capacity of Cu2WS4@COF composites (21.60 mg·g-1) was 9 times larger than that of Cu2WS4 crystals, which may be ascribed to more active S sites exposed in hybrid interfaces formed in the Cu2WS4 nano-homojunction and between Cu2WS4 nanoparticles and COFs. More importantly, such hybrid materials reduced adsorption deactivation at high temperatures, having a wide operating temperature range (from 40 to 200 °C) owing to the thermostability of active S species immobilized by both physical confined and chemical interactions in COFs. Accordingly, this work not only provides an effective method to construct uniform TMD-based sorbents for mercury capture but also opens a new realm of advanced COF hybrid materials with designed functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.