Abstract

α,ω-Dodecanediol is a versatile material that has been widely used not only as an adhesive and crosslinking reagent, but also as a building block in the pharmaceutical and polymer industries. The biosynthesis of α,ω-dodecanediol from fatty derivatives, such as dodecane and dodecanol, requires an ω-specific hydroxylation step using monooxygenase enzymes. An issue with the whole-cell biotransformation of 1-dodecanol using cytochrome P450 monooxygenase (CYP) with ω-specific hydroxylation activity was the low conversion and production of the over-oxidized product of dodecanoic acid. In this study, CYP153A33 from Marinobacter aquaeolei was engineered to obtain higher ω-specific hydroxylation activity through site-directed mutagenesis. The target residue was mutated to increase flux toward α,ω-dodecanediol synthesis, while reducing the generation of the overoxidation product of dodecanoic acid and α,ω-dodecanedioic acid. Among the evaluated variants, CYP153A33 P136A showed a significant increase in 1-dodecanol conversion, i.e., 71.2% (7.12 mM from 10 mM 1-dodecanol), with an increased hydroxylation to over-oxidation activity ratio, i.e., 32.4. Finally, the applicability of this engineered enzyme for ω-specific hydroxylation against several 1-alkanols, i.e., from C6 to C16, was investigated and discussed based on the structure-activity relationship.

Highlights

  • Cytochrome P450 monooxygenases (CYPs) are oxidoreductases that catalyze the insertion of an oxygen atom into diverse substrates, with excellent regio-/stereo-selectivity (Park et al, 2020b); CYP consists of heme-thiolate structures in its catalytic core

  • Putidaredoxin camB and putidatedoxin reductase camA from Pseudomonas putida were overexpressed as the redox proteins for CYP catalysis, and the long-chain fatty acid transporter fadL from Escherichia coli was overexpressed in E. coli BW25113(DE3)ΔfadD (Bae et al, 2014; Park and Choi, 2020)

  • The CYP153A33-encoding gene was co-expressed with CamAB redox proteins for the whole-cell biotransformation of 1dodecanol. 10 mM of 1-Dodecanol (A) was used as the substrate, and the whole-cell bioconversion resulted in diverse production profiles, including α,ω-dodecanediol (B), dodecanoic acid (C), ω-hydroxydodecanoic acid (D), and α,ω-dodecanedioic acid (E) (Figure 1)

Read more

Summary

Introduction

Cytochrome P450 monooxygenases (CYPs) are oxidoreductases that catalyze the insertion of an oxygen atom into diverse substrates, with excellent regio-/stereo-selectivity (Park et al, 2020b); CYP consists of heme-thiolate structures in its catalytic core. Α,ω-alkanediols are versatile chemicals that can be obtained via the consecutive oxidation of alkanes/1alkanol or the reduction of diacids by carboxylic acid reductase (Kirillova et al, 2009; Olmedo et al, 2016; Hsieh et al, 2018). They are widely used as monomer precursors for polyesters, polyamides, and polyurethane, through cascade oxidation, amination, and polymerization reactions (Ahsan et al, 2018). Α,ω-alkanediols are widely used as building blocks for polyester synthesis through direct esterification reactions (Dai et al, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call