Abstract
The yeast Pichia pastoris has been previously used for extracellular expression of a Rhizopus oryzae lipase (Rol). However, limitations in Rol folding and secretion through the cell wall became apparent when producing it in fed-batch cultivations. In this study, we have investigated the effect of combining two cell engineering strategies to alleviate putative bottlenecks in Rol secretion, namely the constitutive expression of the induced form of the Saccharomyces cerevisiae unfolded protein response transcriptional factor Hac1 and the deletion of the GAS1 gene encoding beta-1,3-glucanosyltransglycosylase, GPI-anchored to the outer leaflet of the plasma membrane, playing a key role in yeast cell wall assembly. The performance of these engineered Rol-producing strains has been compared in fed-batch cultivations set at a low specific growth rate of about 0.005 h-(1). It was found that Rol overexpression in a P. pastoris strain expressing constitutively the induced form of S. cerevisiae Hac1 and the deletion of GAS1 resulted in about a 3-fold and 4-fold increase in the overall process specific productivity, respectively, whereas the double mutant HAC1/deltagas1 strain yielded about a 7-fold increase. Overall, these results reflect the multiplicity of physiological bottlenecks at different levels/steps throughout the Rol synthesis, secretion and excretion processes in P. pastoris.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.