Abstract

The combination of the insufficient availability and the complex structure of siamenoside I (SI), the sweetest glucoside isolated from Siraitia grosvenorii to date, limited its use as a natural sweetener. To solve this problem, an improved biocatalyst, UGT-M2, was semi-rationally created by engineering the uridine diphosphate glycosyltransferase UGT94-289-2 from S. grosvenorii for the monoglucosylation of mogroside IIIE (MG IIIE) to SI. Subsequently, an engineered Escherichia coli cell was constructed, which combined UGT-M2 with a UDP-glucose regeneration system to circumvent the need for expensive UDP-glucose to produce SI. After optimization, high-purity SI (>96.4%) was efficiently prepared from MG IIIE at a 1 L scale with a productivity of 29.78 g/(L day) and a molar yield of 76.5% and without using exogenous UDP-glucose. This study not only developed a whole-cell approach for the preparation of SI but also provided an alternative glycosyltransferase variant for SI biosynthesis with synthetic biology in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call