Abstract

Protein tyrosine O-sulfation is an essential post-translational modification required for effective biological processes such as hemostasis, inflammatory response, and visual phototransduction. Because of its unstable nature under mass spectrometry conditions and residing on low-abundance cell surface proteins, sulfated tyrosine (sulfotyrosine) residues are difficult to detect or analyze. Enrichment of sulfotyrosine-containing proteins (sulfoproteins) from complex biological samples are typically required before analysis. In this work, we seek to engineer the phosphotyrosine binding pocket of a Src Homology 2 (SH2) domain to act as an antisulfotyrosine antibody mimic. Using tailored selection schemes, several SH2 mutants are identified with high affinity and specificity to sulfotyrosine. Further molecular docking simulations highlight potential mechanisms supporting observed characteristics of these SH2 mutants. Utilities of the evolved SH2 mutants were demonstrated by the detection and enrichment of sulfoproteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.